Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем)


Здесь будут рассмотрены бестрансформаторные преобразователи напряжения, как правило, состоящие из генератора прямоугольных импульсов и умножителя напряжения.

Обычно таким образом удается повысить без заметных потерь напряжение не более чем в несколько раз, а также получить на выходе преобразователя напряжение другого знака. Ток нагрузки подобных преобразователей крайне невелик — обычно единицы, реже десятки мА.

Задающий генератор

Задающий генератор бестрансформаторных преобразователей напряжения может быть выполнен по типовой схеме, базовый элемент 1 которой (рис. 1) выполнен на основе симметричного мультивибратора.

В качестве примера элементы блока могут иметь следующие параметры: R1=R4=1 кОм; R2=R3=10 кОм С1=С2=0,01 мкФ. Транзисторы — маломощные, например, КТ315. Для повышения мощности выходного сигнала использован типовой блок усилителя 2.

 

схемы задающих генераторов

 

Рис. 1. Схемы базовых элементов бестрансформаторных преобразователей: 1 — задающий генератор; 2 — типовой блок усилителя.

Бестрансформаторный преобразователь напряжения

Бестрансформаторный преобразователь напряжения состоит из двух типовых элементов (рис. 2): задающего генератора 1 и двухтактного ключа-усилителя 2, а также умножителя напряжения (рис. 2).

Преобразователь работает на частоте 400 Гц и обеспечивает при напряжении питания 12,5 В выходное напряжение 22В при токе нагрузки до 100 мА (параметры элементов: R1=R4=390 Ом. R2- R3=5,6 кОм, C1=C2=0,47 мкФ). В блоке 1 использованы транзисторы КТ603А — б; в блоке 2 — ГТ402В(Г) и ГТ404В(Г).

 

Схема преобразователя с удвоением напряжения

Рис. 2. Схема бестрансформаторного преобразователя с удвоением напряжения.

принципиальная схемы преобразователей напряжения

Рис. 3. Схемы преобразователей напряжения на основе типового блока.

Преобразователь напряжения построенный на основе типового блока, описанного выше (рис. 1), можно применить для получения выходных напряжений разчой полярности так, как это показано на рис. 3.

Для первого варианта на выходе формируются напряжения +10 В и -10 В; для второго — +20 В и -10 В при питании устройства от источника напряжением 12В.

Схема преобразователя для питания тиратронов 90В

Для питания тиратронов напряжением примерно 90 В применена схема преобразователя напряжения по рис. 4 с задающим генератором 1 и параметрами элементов: R1=R4=-1 кОм, R2=R3=10 кОм, С1 =С2=0,01 мкФ.

Здесь могут быть использованы широко распространенные маломощные транзисторы. Умножитель имеет коэффициент умножения 12 и при имеющемся напряжении питания можно было бы ожидать на выходе примерно 200В, однако реально из-за потерь это напряжение составляет всего 90 В, и величина его быстро падает с увеличением тока нагрузки.

принципиальная схема преобразователя напряжения с многокаскадным умножителем

Рис. 4. Схема преобразователя напряжения с многокаскадным умножителем.

Инвертор полярности напряжения из (+) в (-)

Для получения инвертированного выходного напряжения также может быть использован преобразователь на основе типового узла (рис. 1). На выходе устройства (рис. 5) образуется напряжение, противоположное по знаку напряжению питания.

принципиальная схема инвертора напряжения

Рис. 5. Схема инвертора напряжения.

По абсолютной величине это напряжение несколько ниже напряжения питания, что обусловлено падением напряжения (потерями напряжения) на полупроводниковых элементах. Чем ниже напряжение питания схемы и чем выше ток нагрузки, тем больше эта разница.

Преобразователь (удвоитель) напряжения

Преобразователь (удвоитель) напряжения (рис. 6) содержит задающий генератор 1 (1 на рис. 1.1), два усилителя 2 (2 на рис. 1.1) и выпрямитель по мостовой схеме (VD1 — VD4).

принципиальная схема удвоителя напряжения повышенной мощности

Рис. 6. Схема удвоителя напряжения повышенной мощности.

Блок 1: R1 =R4=100 Ом; R2=R3=10 кОм; C1=C2=0,015 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Известно, что мощность, передаваемая из первичной цепи во вторичную, пропорциональна рабочей частоте преобразования, поэтому одновременно с ее ростом уменьшаются емкости конденсаторов и, следовательно, габариты и стоимость устройства.

Данный преобразователь обеспечивает выходное напряжение 12В (на холостом ходу). При сопротивлении нагрузки 100 Ом выходное напряжение снижается до 11 В; при 50 Ом — до 10 В; а при 10 Ом — до 7 В.

Двуполярный преобразователь со средней точкой

Преобразователь напряжения (рис. 7) позволяет получить на выходе два разнополярных напряжения с общей средней точкой. Такие напряжения часто используют для питания операционных усилителей. Выходные напряжения близки по абсолютной величине напряжению питания устройства и при изменении его величины изменяются одновременно.

принципиальная схема преобразователя для разнополярных выходных напряжений

Рис. 7. Схема преобразователя для получения разнополярных выходных напряжений.

Транзистор VT1 — КТ315, диоды VD1 и VD2—Д226.

Блок 1: R1=R4=1,2 кОм; R2=R3=22 кОм; С1=С2=0,022 мкФ, транзисторы КТ315.

Блок 2: транзисторы ГТ402, ГТ404.

Выходное сопротивление удвоителя — 10 Ом. В режиме холостого хода суммарное выходное напряжение на конденсаторах С1 и С2 равно 19,25 В при токе потребления 33 мА. При увеличении тока нагрузки от 100 до 200 мА это напряжение снижается с 18,25 до 17,25 В.

Преобразователи-инверторы с задающим генератором на КМОП-элементах

Задающий генератор преобразователя напряжения (рис. 8) выполнен на двух КМОП-элементах, К его выходу подключен каскад усиления на транзисторах VT1 и VT2. Инвертированное напряжение на выходе устройства с учетом потерь преобразования на несколько процентов (или десятков процентов — при низковольтном питании) меньше входного.

Схема преобразователя напряжения-инвертора с задающим генератором на КМОП-элементах

Рис. 8. Схема преобразователя напряжения-инвертора с задающим генератором на КМОП-элементах.

Похожая схема преобразователя изображена на следующем рисунке (рис. 9). Преобразователь содержит задающий генератор на КМОП-микросхеме, каскад усиления на транзисторах VT1 и VT2, схемы удвоения выходного импульсного напряжения, конденсаторные фильтры и схему формирования искусственной средней точки на основе пары стабилитронов.

На выходе преобразователя формируются следующие напряжения: +15 б при токе нагрузки 13... 15 мА и -15 В при токе нагрузки 5 мА.

принципиальная схема конденсаторного преобразователя напряжения

Рис. 9. Схема преобразователя напряжения для формирования разнополярных напряжений с задающим генератором на КМОП-элементах.

На рис. 10 показана схема выходного узла бестрансформаторного преобразователя напряжения.

принципиальная схема выходного каскада бестрансформаторного преобразователя напряжения.

Рис. 10. Схема выходного каскада бестрансформаторного преобразователя напряжения.

Этот узел фактически является усилителем мощности. Для управления им можно использовать генератор импульсов, работающий на частоте 10 кГц.

Без нагрузки преобразователь с таким усилителем мощности потребляет ток около 5 мА. Выходное напряжение приближается к 18 В (удвоенному напряжению питания). При токе нагрузки 120 мА выходное напряжение уменьшается до 16 б при уровне пульсаций 20 мВ. КПД устройства около 85%, выходное сопротивление — около 10 Ом.

При работе узла от задающего генератора на КМОП-элементах установка резисторов R1 и R2 не обязательна, но для ограничения выходного тока микросхемы желательно соединить ее выход с транзисторным усилителем мощности через резистор сопротивлением в несколько кОм.

Преобразователь напряжения для управления варикапами

Простая схема преобразователя напряжения для управления варикапами многократно воспроизведена в различных журналах. Преобразователь вырабатывает 20 В при питании от 9 б, и такая схема показана на рис. 11.

На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. Диоды VD1 — VD4 и конденсаторы С2 — С5 образуют умножитель напряжения, а резистор R5 и стабилитроны VD5, VD6 — параметрический стабилизатор напряжения.

принципиальная схема преобразователя напряжения для варикапов

Рис. 11. Схема преобразователя напряжения для варикапов.

Преобразователь напряжения на КМОП микросхеме

принципиальная схема преобразователя напряжения на КМОП микросхеме

Рис. 12. Схема преобразователя напряжения на КМОП микросхеме.

Простой преобразователь напряжения на одной лишь КМОП-микросхеме с минимальным числом навесных элементов можно собрать по схеме на рис.12.

Основные параметры преобразователя при разных напряжениях питания и токах нагрузки приведены в таблице 1.

Таблица 1. Параметры преобразователя напряжения (рис. 12):

Uпит, В

Івых. мА

Uвых, В

10

5

17

10

10

16

10

15

14,5

15

5

27,5

15

10

26,5

15

15

25,5

Двуполярный преобразователь

принципиальная схема выходного каскада формирователя двухполярного напряжения

Рис. 13. Схема выходного каскада формирователя двухполярного напряжения.

Для преобразования напряжения одного уровня в двухполярное выходное напряжение может быть использован преобразователь с выходным каскадом по схеме на рис. 13.

При входном напряжении преобразователя 5В на выходе получаются напряжения +8В и -8В при токе нагрузки 30 мА. КПД преобразователя составил 75%. Значение КПД и величину выходного напряжения можно увеличить за счет использования в выпрямителе-умножителе напряжения диодов Шотки. При увеличении напряжения питания до 9 В выходные напряжения возрастают до 15 В.

Приблизительный аналог транзистора 2N5447 — КТ345Б; 2N5449 — КТ340Б. В схеме можно использовать и более распространенные элементы, например, транзисторы типа КТ315, КТ361.

Схема преобразователя-инвертора на микросхеме КР1006ВИ1

Для схем преобразователей напряжения, построенных по принципу умножителей импульсного напряжения, могут быть использованы самые разнообразные генераторы сигналов прямоугольной формы.

Такие генераторы часто строят на микросхеме КР1006ВИ1 (рис. 14) . Выходной ток этой микросхемы достаточно большой (100 мА) и часто можно обойтись без каскадов дополнительного усиления.

Генератор на микросхеме DA1 (КР1006ВИ1) вырабатывает прямоугольные импульсы, частота следования которых определяется элементами R1, R2, С2. Эти импульсы с вывода 3 микросхемы подаются на умножитель напряжения.

К выходу умножителя напряжения подключен резистивный делитель R3, R4, напряжение с которого поступает на вход «сброс» (вывод 4) микросхемы DA1.

Параметры этого делителя подобраны таким образом, что, если выходное напряжение по абсолютной величине превысит входное (напряжение питания), генерация прекращается. Точное значение выходного напряжения можно регулировать подбором сопротивлений резисторов R3 и R4.

принципиальная схема преобразователя-инвертора на микросхеме КР1006ВИ1

Рис. 14. Схема преобразователя-инвертора напряжения с задающим генератором на микросхеме КР1006ВИ1.

Характеристики преобразователя — инвертора напряжения (рис 14) приведены в табл. 2.

Таблица 2. Характеристики преобразователя-инвертора напряжения (рис. 14).

Uпит, В

Івых, мА

Iпотр, мА

КПД, %

6

3,5

13

27

7

6

22

28

8

11

31

35

10

18

50

36

12

28

70

40

Умощненный преобразователь-инвертор на микросхеме КР1006ВИ1

На следующем рисунке показана еще одна схема преобразователя напряжения на микросхеме КР1006ВИ1 (рис. 15). Рабочая частота задающего генератора 8 кГц.

На его выходе включен транзисторный усилитель и выпрямитель, собранный по схеме удвоения напряжения. При напряжении источника питания 12 б на выходе преобразователя получается 20 В. Потери преобразователя обусловлены падением напряжения на диодах выпрямителя-удвоителя напряжения.

принципиальная схема преобразователя напряжения на микросхеме КР1006ВИ1

Рис. 15. Схема преобразователя напряжения с микросхемой КР1006ВИ1 и усилителем мощности.

Инвертор полярности напряжения на микросхеме КР1006ВИ1

На основе этой же микросхемы (рис. 16) может быть создан инвертор напряжения. Рабочая частота преобразования — 18 кГц, скважность импульсов — 1,2.

принципиальная схема формирователя напряжения отрицательной полярности

Рис. 16. Схема формирователя напряжения отрицательной полярности.

Преобразователь напряжения-инвертор на основе ТТЛ-микросхем

Как и для других подобных устройств, выходное напряжение преобразователя существенно зависит от тока нагрузки.

ТТЛ и КМОП-микросхемы могут быть использованы для выпрямления тока. Развивая тему, автор этой идеи Д. Катберт предложил бестрансформаторный преобразователь напряжения-инвертор на основе ТТЛ-микросхем (рис. 7).

 

принципиальная схема инвертора напряжения на основе двух микросхем

Рис. 17. Схема инвертора напряжения на основе двух микросхем.

Устройство содержит две микросхемы: DD1 и DD2. Первая из них работает в качестве генератора прямоугольных импульсов с частотой 7 кГц (элементы DD1.1 и DD1.2), к выходу которого подключен инвертор DD1.3 — DD1.6.

Вторая микросхема (DD2) включена необычным образом (см. схему): она выполняет функцию диодов. Все ее элементы-инверторы для увеличения нагрузочной способности преобразователя включены параллельно.

В результате такого включения на выходе устройства получается инвертированное напряжение -U, примерно равное (по абсолютной величине) напряжению питания. Напряжение питания устройства с КМОП-микросхемой 74НС04 может быть от 2 до 7 В. Примерный отечественный аналог — ТТЛ-микросхема типа К555ЛН1 (работает в более узком диапазоне питающих напряжений) или КМОП-микросхема КР1564ЛН1.

Максимальный выходной ток преобразователя достигает 10 мА. При отключенной нагрузке устройство практически не потребляет ток.

Преобразователь напряжения на микросхеме К561ЛА7

В развитие рассмотренной выше идеи использования защитных диодов КМОП-микросхем, имеющихся на входах и выходах КМОП-элементов, рассмотрим работу преобразователя напряжения, выполненного на двух микросхемах DD1 и DD2 типа К561ЛА7 (рис. 18).

На первой из них собран генератор, работающий на частоте 60 кГц. Вторая микросхема выполняет функцию мостового высокочастотного выпрямителя.

принципиальная схема точного преобразователя полярности на двух микросхемах К561ЛА7

Рис. 18. Схема точного преобразователя полярности на двух микросхемах К561ЛА7.

В процессе работы преобразователя на выходе формируется напряжение отрицательной полярности, с большой точностью при высокоомной нагрузке повторяющее напряжение питания во всем диапазоне паспортных значений питающих напряжений (от 3 до 15 В).

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.


2 7529 Стабилизаторы и преобразователи
преобразователь напряжения
Оставить комментарий:

cashback