Практические упражнения по работе с осциллографом

В прошлой статье "Что такое осциллограф и как им пользоваться" мы познакомились с основами работы этого замечательного прибора. Чтобы освоить работу с осциллографом, нужны практические упражнения. В статье рассмотрены простые эксперименты с источником питания на основе тарнсформатора, с мостовым выпрямителем, а также с RC-цепями. Материал будет полезен тем кто желает познакомиться с измерительным прибором-осциллографом.

Источник питания и мостовой выпрямитель

Начнемс самого простого, - с источника питания на силовом трансформаторе и мостовом выпрямителе. Прежде всего необходим трансформатор, пусть это будет китайский «ALG» с вторичной обмоткой на 12V (рис.1). К вторичной обмотке трансформатора подключим вход осциллографа (пусть это С1-65) и мультиметр.

Предварительно ручку осциллографа «Время/дел.» установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа установим в положение «импульсный режим». Теперь подадим на первичную обмотку переменное напряжение 220V (от электросети, соблюдая все необходимые правила электробезопасности).

Схема для эксперимента и изображение на экране осциллографа

Рис. 1. Схема для эксперимента и изображение на экране осциллографа.

Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , - в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:

выражение для расчета

Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.

На его экране будет весьма интересная картинка, - нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.

То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, - это еще не постоянное напряжение.

А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.

На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).

Подключим и исследуем мостовой выпрямитель из четырех диодов

Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.

По верхним пикам кривизны этой линии - на 17V. Так выглядит напряжение со сглаженными пульсациями. Чтобы посмотреть величину пульсаций нужно переключить вход осциллографа на переменный ток «~» и повернуть ручку «V/дел.» в сторону уменьшения, пока пульсации не будут видны отчетливо. В данном случае, установили 0,5V/дел. (рис.3, осциллограмма справа). Видно, что размах пульсаций равен 1V.

Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.

Сглаживающий конденсатор в выпрямителе

Рис. 3. Сглаживающий конденсатор в выпрямителе.

Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.

Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.

Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.

Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, - напряжение стабилизации.

Подключим схему параметрического стабилизатора к вторичной обмотке трансформатора, и с помощью осциллографа, посмотрим во что превратилась синусоида переменного напряжения (рис.4). Ручку «Время/дел.» осциллографа установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа - в импульсный режим.

Исследуем параметрический стабилизатор

Рис. 4. Исследуем параметрический стабилизатор.

Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В - это 10V).

А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.

Исследуем параметрический стабилизатор на выходе моста

Рис. 5. Исследуем параметрический стабилизатор на выходе моста.

На рисунке 6 показана схема источника питания с параметрическим стабилизатором на выходе. Мультиметр и осциллограф покажут постоянное напряжение 10V, а пульсации будут значительно меньше чем без стабилизатора.

Схема источника питания с параметрическим стабилизатором на выходе

Рис. 6. Схема источника питания с параметрическим стабилизатором на выходе.

 

Исследуем RC-цепи с помощью осциллографа

 

Еще одним практическим упражнением работы с осциллографом может быть исследование RC-цепи с помощью осциллографа. Для этого нам потребуется генератор прямоугольных импульсов. Во многих осциллографах, в частности, и С1-65, есть калибратор. Это генератор постоянного напряжения или прямоугольных импульсов частотой 1 кГц.

Калибратор предназначен для калибровки, но его можно с успехом использовать как лабораторный генератор прямоугольных импульсов при налаживании и ремонте аппаратуры.

Но, есть осциллографы и без калибраторов, если ваш именно такой, то нужно будет взять лабораторный функциональный генератор или самому сделать простой генератор прямоугольных импульсов частотой около 1 кГц, по схеме, показанной на рисунке 1. Это простейший мультивибратор на цифровой микросхеме. Но для наших опытов он подходит.

Далее, мы будем рассматривать работу с калибратором осциллографа в качестве источника импульсов. Если же импульсы берутся от отдельного генератора (например, как на рис.1), нужно будет просто подавать их на исследуемую RC-цепь от него. При этом не забыть общий минус питания генератора соединить с клеммой «корпус» осциллографа.

Схема простого генератора импульсов

Рис. 1. Схема простого генератора импульсов.

И так, если мы соединим куском провода гнезда «У» и «Выход калибратора», включим калибратор на генерацию импульсов размахом 5V. При этом ручкой «V/дел» выставим «1», а ручкой «время/дел» выставим «0,2mS», вход переключим на переменное напряжение «~», на экране осциллографа будет видно примерно то, что показано на рисунке 2. То есть, прямоугольные импульсы.

Импульсы на экране осциллограф

Рис. 2. Импульсы на экране осциллограф.

Для экспериментов с RC-цепью потребуется конденсатор емкостью 0,01 мкФ (часто обозначается как «10п» или «103») и переменный резистор сопротивлением 100 кОм.

Экспериментировать будем с двумя типами цепей, - дифференцирующей и интегрирующей.

Сначала подключаем дифференцирующую цепь, состоящую из резистора R1 и конденсатора С1 (рис. 3). Теперь импульсы

Практические упражнения по работе с осциллографом

Рис. З. Подключаем дифференцирующую цепь.

от калибратора на вход «У» осциллографа поступают через цепь R1C1. Резистор R1 установить в положение максимального сопротивления. При этом, импульсы на экране осциллографа станут как на рис.4. Их амплитуда немного увеличится, но появится наклон в сторону к спаду.

Импульсы на экране осциллографа

Рис. 4. Импульсы на экране осциллографа.

Если начать поворачивать рукоятку переменного резистора R1, его сопротивление будет уменьшаться, и при этом, амплитуда импульсов будет увеличиваться, но и наклон в сторону к спаду тоже возрастает. На рисунке 5 уже совсем не похоже на прямоугольные импульсы. Однако амплитуда пиков сильно выросла. При дальнейшем повороте R1, амплитуда пиков будет продолжать расти, а наклоны приобретут параболический вид.

Это уже не похоже на прямоугольные импульсы

Рис. 5. Это уже не похоже на прямоугольные импульсы.

Но, при дальнейшем повороте R1, амплитуда начинает снижаться, и в самом крайнем положении, когда сопротивление R1 равно нулю, импульсы пропадают (это и не удивительно, ведь R1, в состоянии нулевого сопротивления, фактически замкнул вход осциллографа).

Вывод такой, что в результате дифференцирования прямоугольного импульса, он превращается в остроконечный импульс увеличенной амплитуды. Причем, чем больше R1, тем более импульс похож на прямоугольный.

Связанно это с тем, что от сопротивления R1 зависит время зарядки - разрядки конденсатора. И чем меньше R1, тем меньше это время. К тому же, при переходе от положительной полуволны к отрицательной (и наоборот), накопленное на конденсаторе напряжение добавляется к амплитуде импульса.

Поэтому, амплитуда напряжения на резисторе R1 в пиках увеличивается тем больше, чем быстрее заряжается конденсатор. Но при этом пики тем уже, чем меньше R1. Теперь поменяем детали местами, чтобы получилась схема, показанная на рисунке 6. RC-цепочка стала интегрирующей.

Новая схема для эксперимента

Рис. 6. Новая схема для эксперимента.

Если переменный резистор R1 находится в положении минимального сопротивления, на экране осциллографа будет как на рис. 7. Почти такие же прямоугольные импульсы, только фронты и спады слегка сглажены.

Начинаем поворачивать ручку переменного резистора R1, - фронты и спады еще сильнее сглаживаются и приобретают вид, как на рисунке 8. При этом амплитуда существенно снижается.

Выкручиваем ручку переменного резистора R1 до конца (в положение максимального сопротивления), - амплитуда импульсов сильно снижается, и они уже напоминают скорее треугольники (рис.9).

Изображение на экране осциллографа для эксперимента

Рис. 7. Изображение на экране осциллографа для эксперимента.

В интегрирующей цепи осциллограф показывает напряжение на конденсаторе. На него поступают импульсы через резистор R1 и заряжают и разряжают его. Как и в первом случае, скорость заряда -разряда тем больше, чем меньше сопротивление резистора. Но, здесь ситуация обратная, поэтому, чем меньше R1 тем скорее С1 заряжается или разряжается до максимального или минимального значения.

А значит, тем круче фронты и спады импульсов на С1. Вот эти закругления, видимые на осциллограмме на рис. 7 и есть то самое время, в течение которого происходит зарядка и разрядка конденсатора.

И чем быстрее конденсатор заряжается, тем меньше эти участки. Быстрота же зарядки конденсатора зависит от сопротивления резистора R1, через который на него поступают импульсы.

С увеличением сопротивления резистора R1 конденсатор все медленнее и плавней заряжается - разряжается, - закругления, показывающие время зарядки - разрядки увеличиваются. Поэтому фронты и спады сглаживаются, становятся наклонными.

При дальнейшем увеличении сопротивления R1 время, необходимое на зарядку конденсатора до максимального напряжения увеличивается на столько, что уже становится больше длительности полу-периода импульса. Конденсатор просто не успевает зарядиться до максимальной величины, как начинается его разрядка.

Фронты и спады еще более сглажены

Рис. 8. Фронты и спады еще более сглажены.

Импульсы - треугольники на экране осциллографра

Рис. 9. Импульсы - треугольники на экране осциллографра.

Поэтому амплитуда импульса уменьшается на столько, на сколько конденсатор не успевает зарядиться. В конечном итоге форма импульсов все более и более становится похожа на треугольную.

Источник: РК-11-2016.

2 113 Для начинающих
осциллограф начинающим
кэшбек