Основные элементы цифровой логики

Цифровая логика, элементы, ее представляющие, работают с так называемыми цифровыми сигналами. В отличие от аналоговых, цифровые сигналы принимают два возможных значения: логическая единица и логический нуль. Логическая единица обозначается для краткости «1» или, в некоторых случаях, «высоким» уровнем («В»). Логический нуль, соответственно, обозначается «О» или «низким» уровнем («Н»), Логические элементы, или элементы цифровой логики, построены на биполярных и полевых транзисторах, работающих в режимах насыщения и отсечки.

Наибольшее распространение получили проверенные временем цифровые логические элементы на основе биполярных транзисторов — ТТЛ-элементы (транзисторно-транзисторная логика) и на основе полевых транзисторов — КМОП-эгементы (комплементарные, на основе переходов металл-окисел-полупроводник).

Логические элементы ТТЛ, ассортимент которых насчитывает до 200 наименований различной степени интеграции и функционального назначения, работают при напряжении питания 5 В. Эти микросхемы способны работать до частот 20... 100 МГц и потребляют от источника питания значительный ток.

/ШО/~7-элементы работают в широком диапазоне напряжений питания 5... 15 В, иногда от 3 В. Это исключительно экономичные элементы, которые можно использовать совместно с ТТЛ логикой. Заметный и малоустранимый недостаток большинства этих элементов — относительно низкие рабочие частоты, не превышающие 1...5 МГц.

Ниже будут рассмотрены основные логические элементы цифровой логики.

Поскольку история цифровых логических элементов насчитывает не столь уж много лет, условные символы, используемые для обозначения логических элементов в разных странах мира, заметно отличаются. Поэтому, в порядке сравнения, и для того, чтобы можно было уверенно разбираться в схемах, опубликованных в отечественных и зарубежных источниках информации,

приведены условные обозначения, принятые у нас и в ряде англоговорящих стран (Великобритания, США).

Повторитель (Repeater) — логический элемент, выполняющий функцию повторителя. Элемент может быть реализован на основе эмиттерного (рис. 3.2, 3.5) или истокового (рис. 3.8) повторителей. Переходные конденсаторы (рис. 3.2, 3.5) следует исключить из схемы. Входной сигнал подается на базу транзистора (рис. 3.2, 3.5) через резистор R1 (10 кОм). Номинал резистора R2 — 1 кОм. При подаче на вход такого элемента управляющего сигнала А, на выходе элемента формируется сигнал Y, полностью идентичный входному.

НЕ (NOT) — логический элемент, называемый также инвертором, может быть изготовлен на основе схем, показанных на рис. 3.1, 3.4, 3.7. Выходной сигнал Y является «зеркальной» или «перевернутой» копией входного: когда на входе элемента логическая единица, на выходе — логический нуль, и наоборот.

ИЛИ (OR) — в этом элементе выходной сигнал Y принимает значение логической единицы при наличии на хотя бы одном из его нескольких входах сигнала логической единицы. Если на этих входах логический нуль, на выходе элемента также логический нуль.

ИЛИ-НЕ (OR-NOT) — представляет собой последовательное включение элементов ИЛИ (OR) и НЕ (NOT). Выходной сигнал Y схемы ИЛИ-НЕ при наличии на его входах логического нуля принимает значение логической единицы. Стоит хотя бы одному из входных сигналов принять значение логической единицы, выходной сигнал Y переключится на логический нуль.

И (AND) — этот элемент выполняет функцию схемы совпадения. Его эквивалентную схему можно представить в виде двух или нескольких (по числу входов) последовательно включенных электрических ключей (выключателей): выходной сигнал будет иметь значение логической единицы только в том случае, если на все входы этого логического элемента будет подан уровень логической единицы.

И-НЕ (AND-NOT) — как следует из названия элемента, это устройство представляет собой последовательно включенные элементы И (AND) и НЕ (NOT). При одновременной подаче на входы этого элемента уровней логической единицы на выходе Y элемента будет уровень логического нуля. Если хотя бы на одном из входов элемента сигнал примет уровень логической единицы, сигнал на выходе устройства немедленно переключится с «нуля» на «единицу».

Основные элементы цифровой логики

Эквивалентность (Equivalence) — представляет собой более сложный по структуре логический элемент. Это логическое устройство имеет на выходе логическую единицу только в том случае, когда все без исключения сигналы на его входах будут иметь один и тот же (т.е. одинаковый, эквивалентный) логический уровень, причем не имеет значения, «ноль» это или «единица».

Исключающее ИЛИ (Excluding OR) — выходной сигнал Y этого логического элемента принимает значение логической единицы только в том случае, когда на одном из его входов присутствует логическая единица, а на всех остальных — логический нуль. Стоит нарушить это условие, сигнал на выходе элемента примет значение логического нуля.

На основе простейших элементов цифровой логики могут быть синтезированы практически любые и сколь угодно более сложные устройства цифровой логики — триггеры, счетчики, шифраторы, дешифраторы и другие. В то же время из более сложных элементов могут быть получены более простые. В этом можно легко убедиться умозрительно, анализируя информацию, приведенную на рис. 26.1, либо экспериментально. Так, например, соединив вместе входы А и В элементов ИЛИ-НЕ или И-НЕ, можно получить элемент НЕ.

Отметим попутно, что чаще всего «лишние» неиспользуемые входы логических элементов объединяют с другими выводами, либо соединяют с общей «земляной» шиной или шиной питания (для 7777-микросхем соединение незадейство-ванного входа с шиной питания лучше выполнять через резистор сопротивлением 1...2 кОм).

Для наглядного представления соотношения уровней сигналов на входах и выходах логических элементов приведены соответствующие графики (рис. 26.1).

Для имитации, моделирования и изучения показаны простейшие схемные эквиваленты логических элементов, выполненные на обычных переключателях. Подача сигнала логической единицы соответствует замыканию соответствующего ключа (или переключению сдвоенного ключа для схем, имитирующих функцию элементов Эквивалентность и Исключающее ИЛИ). В порядке

изучения логических элементов рекомендуется самостоятельно собрать и исследовать работу схемных эквивалентов, использовав в качестве индикатора логического уровня авометр.

Таблица истинности в дополнение к графикам сигналов и схемным эквивалентам дает представление о взаимосвязи процессов на входах и выходах логических элементов. В других литературных источниках «1» может иметь обозначение «Н» — «High», а «О» — обозначение «L» — «Low».

Примеры существующих зарубежных логических элементов серии ТТЛ (TTL) и КМОП (CMOS) и их отечественных аналогов также имеются на рис. 26.1.

Цифровые микросхемы могут быть использованы в качестве аналоговых. Примеры нетрадиционного использования цифровых микросхем в аналоговой технике приведены в главе 29.

В то же время существуют микросхемы, способные работать как с аналоговыми, так и с цифровыми сигналами. К таким микросхемам можно отнести коммутаторы аналоговых и цифровых сигналов, выполненные на КТЮТ-элементах (микросхемы К176КТ1, К561КТЗ, К564КТЗ — четырехканальные коммутаторы) и селекторы-мультиплексоры (многоканальные многопозиционные переключатели, например, К561КП1, К561КП2).

Для перехода от цифровых сигналов к аналоговым и обратно используют аналого-цифровые и цифро-аналоговые преобразователи (АЦП и ЦАП).


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

0 2012 Для начинающих
начинающим справочник логика
cashback