Последовательные фильтры в кроссовере АС

Применение последовательных фильтров в кроссоверах АС -редкое техническое решение. В статье рассказано о некоторые нюансах, наблюдаемых при моделировании и измерениях характеристик АС с такими фильтрами, что позволит любителям-конструкторам более обоснованно использовать их в ряде случаев например, применяя коаксиальные динамические головки.

О пассивных разделительных фильтрах (кроссоверах) акустических систем написано уже столько, что можно собрать приличную библиотеку. Не утихают баталии на интернет-форумах между приверженцами фильтров различных типов, поскольку улучшение одних характеристик почти неизбежно ведёт к ухудшению других.

Причём чаще всего спорщики игнорируют факт влияния акустического оформления и собственных параметров головок на характеристики фильтра, рассматривая "идеальные" случаи.

Особый интерес для любителей высококачественного звучания представляют фильтры первого порядка, потому что такие фильтры корректно передают прямоугольный импульс (как сумму полос). И ради этого можно смириться с широкой зоной совместной работы динамических головок.

Однако хорошие импульсные характеристики двухполосной АС с фильтрами первого порядка реализуются только при условии небольшой разницы в фазе совместного излучения и, кроме того, при максимально близком расположении центров излучения НЧ- и ВЧ-головок. Наиболее полно этому условию отвечают коаксиальные излучатели. Большинство головок такого типа используют в автомобильных АС с простейшими фильтрами.

Последовательный и параллельный фильтры

Наиболее распространены параллельные фильтры различного порядка и типа (рис. 1). Их достоинство - независимость каждого фильтра (при сопротивлении источника сигнала, равном нулю), поэтому импеданс нагрузки, частоту среза и порядок фильтров можно выбирать почти произвольно.

Обратная сторона этой гибкости - сложные фазовые соотношения сигналов смежных полос, увеличивающие неравномерность АЧХ в области частот разделения за счёт интерференции и отчасти влияющие на локализацию кажущегося источника звука (КИЗ). Схемы и методы расчёта таких фильтров подробно освещены в литературе, поэтому останавливаться на них не будем.

Фильтры для АС

Рис. 1. Фильтры для АС.

В недорогих трёхполосных АС часто применяют каскадные фильтры, позволяющие сократить число деталей - других достоинств у них нет, сплошные недостатки. Иногда также используют комбинированные фильтры, которые нельзя однозначно отнести к тому или иному типу.

Однако существуют фильтры, незаслуженно игнорируемые и профессиональными разработчиками аппаратуры, и любителями. Речь идёт о последовательных фильтрах, происхождение которых теряется во тьме времён. Действие элементов последовательных фильтров обратно их действию в параллельных.

В параллельном кроссовере каждый из частотно-зависимых элементов преграждает путь сигналам "ненужным" частот, в последовательном - наоборот, пускает их "в обход", а "нелишним" сигналам не оставляют иного пути, кроме как через предназначенную для них нагрузку.

Одно время интерес к последовательным фильтрам пробудил Ричард Смолл (тот самый, который вместе с Невиллом Тилем определил важные электромеханические параметры акустических излучателей).

На рубеже 60-х и 70-х годов он сделал доклад об этих фильтрах на сессии Audio Engineering Society (Общества аудиоинженеров). Доклад назывался "Constant-Voltage Crossover Network Design".

В нём показано, что в последовательном фильтре сумма напряжения на двух полосовых динамических головках будет всегда равна входному, т. е. напряжению на выходе усилителя; это - основное свойство последовательных фильтров.

Кроме того, для таких фильтров первого порядка (и только для них!) ФЧХ всех звеньев взаимно дополняющие, что обеспечивает минимальные искажения АЧХ, уменьшает интерференцию и улучшает локализацию КИЗ.

Схема фильтра

Рис. 2. Схема фильтра.

Схема фильтра и график

Рис. 3. Схема фильтра и график.

Последовательные фильтры более высокого порядка этого достоинства лишены (а других и не имеют), поэтому практически не применяются. Впрочем, при соответствующем выборе номиналов фильтра первого порядка можно увеличить крутизну спада АЧХ вблизи частоты среза до 9... 12 дБ на октаву (рис. 2), но ценой снижения входного сопротивления на частоте разделения [1].

Ещё одно, практически не упоминаемое (но от этого не менее важное) достоинство последовательных фильтров - отсутствие влияния собственной индуктивности звуковых катушек (ЗК) на частоту разделения и суммарную АЧХ. Для иллюстрации этого явления рассмотрим сначала классические фильтры первого порядка (в моделях использованы среднестатистические параметры НЧ- и ВЧ-головок).

Для ФНЧ некомпенсированная индуктивность ЗК НЧ-головки включена последовательно с катушкой индуктивности фильтра, поэтому в результате получаем цепь, которая уже через октаву выше частоты среза превращается в индуктивный делитель напряжения (рис. 3).

Приведённая в примере частота среза дана для наглядности, при её повышении фильтр практически прекращает работу, внося лишь небольшое затухание выше условной частоты среза. Таким образом, для полноценного ФНЧ первого порядка компенсатор Цобеля абсолютно необходим, но в промышленных конструкциях им нередко пренебрегают (экономия!).

Справедливости ради следует отметить, что иногда такое решение применяют целенаправленно для коррекции АЧХ головки на средних частотах, а разделение полос получается за счёт естественного спада АЧХ головки - этот случай нетипичный (рис. 4) [2].

Визуализация коррекции АЧХ головки на средних частотах

Рис. 4. Визуализация коррекции АЧХ головки на средних частотах.

Для ФВЧ реальность тоже не столь радужная, как при расчёте "по формулам". Ёмкость конденсатора фильтра образует с индуктивностью ЗК ВЧ-го-ловки последовательный колебательный контур, демпфированный активным сопротивлением ЗК; в результате вблизи частоты среза возникает небольшой "горбик" (рис. 5).

Обычно это не создаёт проблему, так как для выравнивания отдачи НЧ- и ВЧ-головок в цепи более чувствительной ВЧ-головки вводят делитель напряжения или последовательный резистор (чаще), и электрический резонанс надёжно демпфируется.

График

Рис. 5. График.

Вообще говоря, влиянием последовательного сопротивления пренебрегать нельзя ни в одном случае. Для параллельных фильтров, например, весьма заметно влияние сопротивления проводов между усилителем и АС - при этом характеристики фильтров "плывут", меняется и характер звучания.

Это одна (но далеко не единственная) из причин "мистического" влияния проводов на качество звучания. Влияние сопротивления проводов между фильтром и нагрузкой существенно слабее, поэтому в аудиосистемах высокого уровня кроссовер иногда устанавливают рядом с усилителем, а полосовые излучатели АС подключают к нему отдельными кабелями.

Для последовательных фильтров, кстати, влияние сопротивления проводов выражено слабее, но подробное рассмотрение этих вопросов уведёт нас в сторону и достойно отдельной статьи.

АЧХ график

Рис. 6. АЧХ график.

Рассмотрим теперь влияние параметров реальных головок на работу последовательных фильтров. Используем модели головок из уже рассмотренных примеров, а частоту разделения для наглядности примем 2 кГц. Для начала смоделируем последовательный фильтр для динамических головок с сопротивлением ЗК 3,2 Ом (см. рис. 2).

Номиналы элементов фильтра рассчитаем по приведённым ранее формулам - 25 мкФ и 0,25 мГн, АЧХ и ФЧХ показаны на рис. 6 и рис. 7 соответственно.

ФЧХ график

Рис. 7. ФЧХ график.

Фильтр демонстрирует совершенно непривычные АЧХ по полосам и идеальную прямую

Рис. 8. Фильтр демонстрирует совершенно непривычные АЧХ по полосам и идеальную прямую.

Поскольку напряжение источника приложено к входу кроссовера, сами напряжения на элементах последовательной цепи (как мы увидим далее) могут изменяться весьма причудливым образом, но их сумма остаётся постоянной и автоматически учитывает все фазовые сдвиги.

В случае идеальной (резистивной) нагрузки сдвиг фаз между выходами остаётся постоянным во всей полосе частот и равен 90 град. Вернёмся к реальным головкам. Тот же фильтр демонстрирует совершенно непривычные АЧХ по полосам и идеальную прямую как результат их совместной работы (рис. 8).

То, что было препятствием в работе параллельного фильтра, стало фактором повышения эффективности у последовательного. Когда с ростом частоты растёт индуктивное сопротивление НЧ-головки, сигнал с ещё большей охотой идёт в обход, через конденсатор.

Индуктивность фильтра заметно выше индуктивности ЗК ВЧ-головки, что также эффективно направляет высокочастотные составляющие спектра сигнала именно к ней. И там, и там крутизна спада АЧХ вблизи частоты разделения близка к 12 дБ на октаву - заметьте, при базовых номиналах элементов, без снижения входного сопротивления!

ФЧХ с реальными головками уже не выглядит столь же привлекательно (рис. 9), однако и здесь фазовые сдвиги в основном сохраняются постоянными, кроме области разделения полос.

Впрочем, "загогулину" на фазовой характеристике легко устранить включением компенсатора Цобеля, тогда и полосовая АЧХ станет более аккуратной (но и крутизна вернётся к 6 дБ на октаву). Однако, в отличие от параллельных фильтров, компенсатор здесь - всего лишь необязательная опция.

ФЧХ с реальными головками

Рис. 9. ФЧХ с реальными головками.

Остаётся последний штрих - импеданс нагрузки. Согласно канонам расчёта последовательных фильтров, динамические головки должны быть с одинаковым импедансом. Подразумевается, что и отдача у них тоже одинаковая - в противном случае согласующие цепи изменят импеданс.

Однако эти ограничения - кажущиеся, если при расчётах для каждого элемента использовать своё значение импеданса: НЧ-головки - для конденсатора, ВЧ-головки - для индуктивности. Получившийся фильтр может иметь непривычные сочетания номиналов, но работать будет не хуже. В качестве примера - фильтр для коаксиальной головки SoundFen D-MAX 4" (рис. 10).

При сопротивлении основной головки 7 Ом высокочастотный изодинамический излучатель с плоской ЗК практически не проявляет индуктивности в полосе 34, его сопротивление постоянному току всего лишь 2,4 Ом.

SoundFen D-MAX 4

Рис. 10. SoundFen D-MAX 4.

Нетрудно заметить, что последовательный резистор, корректирующий отдачу ВЧ-звена, слабо влияет на АЧХ и не затрагивает частоту разделения (рис. 11).

Схема фильтра и его график

Рис. 11. Схема фильтра и его график.

Подведём итоги. Последовательный фильтр не чувствителен к реальному импедансу нагрузки и может применяться в случае различного номинального сопротивления головок. В некоторых случаях он может соперничать по эффективности с классическими фильтрами второго порядка при вдвое меньшем числе деталей.

Наконец, даже довольно широкая зона совместного действия головок не ухудшает локализацию КИЗ благодаря постоянному сдвигу фаз между полосами. Поэтому последовательный фильтр идеален для применения с коаксиальными головками, но будет не менее полезен и в случае классических двухполосных АС.

А. Шихатов, г. Москва. Р-12-17.

Литература:

  1. Елютин А. Последовательный кроссовер - автозвук.рф.
  2. Ким В. Компонентная акустика FOCAL PS 165V. - автозвук.рф.
2 354 Акустические системы
кроссовер акустическая система
Написать комментарий:

cashback